发布日期:2024-03-25 来源: 网络 阅读量( )
老古董收录机拆解案例 收录机电路设计解析收了一台松下的老收录机,Panasonic RQ-517S型,1975年左右生产的。全晶体管分立电路没有集成电路芯片,带调频调幅双波段收音,单卡单声道录放音。这机子收来的时候有故障,开机是持续的嗒嗒的声音,收不到音BWIN网站,而且录音机芯的按键都按不动,所以就修理打理一下。 外型是那个年代的经典造型,这个机子是便携式设计,体积比较小。照片图像有变形是镜头太靠近的问题: 铭牌,日本本土生产。这台收录机是全球机型,支持多国电源电压,而且收音的频率范围也是世界通用的,不是日本国内频率: 顶部的按钮,左边6个是机芯操作按钮,然后是功能开关,切换调频、调幅收音和录放音,最右面两个旋钮分别控制音调和音量: 这种老机器通常都很容易拆,因为那时的塑料模具简单,没有现在常见的隐藏卡扣。螺丝拧掉就可轻松拆下前壳: 前壳上的喇叭,松下自产,有防磁结构防止磁场影响磁带和磁头,看起来象内磁喇叭。这个喇叭是很特别的3.2欧姆阻抗,这种精心设计的低阻抗喇叭可以在较低的供电电压下获得更大的输出功率: 交流电源部分可以单独拆下取出,主要是保险丝、变压器、整流滤波电路以及切换电路,变压器的体积很小,估计也就是有5W左右: 先修机械部分,70年代的机芯设计比较原始,体积大、部件形状简单、数量多,磁头的体积也很大,这个磁头看不出磨损: 机芯主导轴飞轮是全金属车制的,直径和重量很大,保证运行的稳定,减少抖晃。很明显,皮带已经老化断裂,需要更换: 机芯电机的特写,体积很大,是内置稳速调速机构(应该是机械离心式调速器,不是电子稳速电路)的松下自产的6V电机: 电机金属皮带轮特写,是用螺丝紧固在电机轴上的,安装工序复杂。而电机是通过4个橡胶垫固定在机芯上的,减少震动的影响: 机芯按钮卡死的问题很容易修,用WD40神油即可破解,按键相关部位都喷过神油后反复按各个键很快就灵活了: 下面是电路的维修,比机芯要麻烦得多,还走了一些弯路。先在网上找到了该机的电路图——只找到了电路图,没有印刷电路板图,所以实际对照元件和走线还是很费工夫。这个收录机全机由14个晶体管组成,大部分是硅管,但是低放部分还混合了4只锗晶体管,这在日本硅平面工艺晶体管甚至大规模集成电路都已经成熟的70年代是很反常的。分析电路觉得这些锗管是有意选取的,目的是在低供电电压(6V)下用锗管的极低的饱和电压的特性可以获得更大的输出功率和较小的失真,以便同时兼顾该收录机产品的便携性和性能指标。整机的电路都是很成熟经典的,Tr51是FM收音高放,Tr52负责FM本振混频,Tr53组成第一级FM中放。Tr54是AM收音的本振混频,然后Tr55和Tr56负责同时对FM和AM进行两级中放,最后送到AM二极管检波和FM双二极管平衡鉴频变成音频信号。Tr1~Tr3进行音频前置放大,收音和磁带录放共用,Tr5是有源滤波给前置放大电路提供稳定的电源,Tr7和Tr8一对锗材料的互补中功率管完成后级OTL推挽功放输出,Tr4和Tr6则是为Tr7和Tr8提供稳定的偏置电流,减小失真。 电路板上一些细节还是挺有意思,很值得看的,比如下面这些。这个电路板是单面的,但是注意看,这单面电路板上还有高科技呢——这元件面上印刷的白色线条并不是铜箔面的走线标识,而是真正的电路,它是用银浆印刷在元件面而构成另外一面电路从而在单面电路板上实现双面电路板的走线灵活性,而且这印刷的不仅仅有电路,还有元件呢,注意黄色画圈的地方,丝印是电阻标号,而圈内则是用碳膜直接印刷在电路板上的电阻!这是当时的高科技,直接把电阻用印刷工艺做在电路板上,减少了焊接零件的数量提高了系统的可靠性。这种直接在电路板上用银浆印刷电路和碳膜印刷电阻的技术在上世纪70-80年代日本松下索尼等公司的电器中比较流行,属于高科技,但是后来因为工艺成本的问题就退出了历史舞台: 虽然已经使用了银浆印刷电路在单面电路板上实现双面电路板性能的高科技,但是这个电路板还是没有能完全避免使用跳线,而且设计这个电路板的日本工程师的洋泾浜英语不太灵光,多处电路板上的跳线丝印错误拼写成了“JAMP”而不是“JUMP”(图中画圈的地方): 电路板上可以看到有一些玻璃封装的点接触二极管,有点象在中国玩矿石机里常用的2AP9,只不过没有涂黑漆: 更有趣的是几个金属管封装的中小功率锗三极管(下图箭头所指),在中国的老收音机里很常见,但是在日本70年代中期的产品中应该说是非常罕见了。用锗管的原因前面分析过了,是为了提高功放在低电压前提下的不失真输出功率: 更为奇葩的是,虽然采用了高科技的电路板,但是有些零件却是搭棚焊接的,比如这个电解电容(原厂就是这样,并非维修所致): 下面开始艰苦的维修。因为故障现象是嗒嗒的噪音,所以按照常识首先怀疑最容易损坏的近50岁高龄的电解电容们可能失效了,但是拆下电容测试,却很意外地发现电解的容量都是符合标称值的,半个世纪的老化也没让他们失容变小。也难怪,这机子连最小的电解电容也都是统统采用伊娜ELNA,妥妥的高端货,很靠谱: 于是怀疑Tr5有源滤波电路有问题。在电路板上找了半天终于找到了Tr5的位置,发现这个Tr5好像是搭棚焊的: 把它拆下来,果然这货是和一个电阻搭棚焊在一起,然后再焊到电路板上的,不知道当年的设计师是怎么想的,都用上银浆印刷双面电路板高科技了,竟然还有几处使用搭棚焊的奇葩工艺,估计可能是量产中电路发生了个别修正和改进而电路板已经定型做好: 接下来维修陷入困境,检查结果表明电解电容都没有老化失容,所有三极管也都是好的,那么问题出在哪里呢?把电路板翻来覆去找问题的时候,突然一瞬间噪音意外消失了,电台声音出现了!然后几秒钟后又重新出现噪音,电台声消失。这是一个好迹象,说明很可能是电路板有虚焊导致的问题。用放大镜仔细检查电路板焊接面,果然发现了这个虚焊,就是画圈的地方: 焊好试机,这时清晰的广播声传来,心情也无比喜悦!接下来发现拨动功能转换开关和调整音量的时候也有明显的噪音,再次出动WD40神油,把各个开关和电位器都喷一遍,立竿见影,噪音消失: 最后,组装好整机进行完整试机,发现这个近50岁的收录机质量和状态是相当的好,特别是FM收音的灵敏度非常高,基本上比手头上先进得多的各种新的集成电路收音机的灵敏度还要高,用几个分立晶体管做到这个灵敏度而且几十年过去了都没有衰减变坏,元器件参数没有漂移,这设计水平和器件工艺是很高的。AM的表现还可以,反正现在AM波段各种干扰太多,基本都没法听了。比较吃惊的是,这体积不大的便携机子开到大音量声音非常大而且没有明显的失线V供电的机器要响不少,这应该是得益于其特别选用的锗管功放后级以及特制的3.2欧姆的低阻抗喇叭。该机的磁带播放效果则很一般,声音有些发闷,而且只是单声道。录音的效果则更差一些,毕竟是最简单的直流抹音直流偏磁录音设计,录音只是个辅助功能。整机除了一根橡胶皮带断裂,其他所有元件包括最容易坏的电解电容和中周里面的瓷管电容都完全正常没有任何问题,当年松下的元器件质量控制应该说是相当靠谱的。当然,修好了这近半世纪前的机器其实也没多少实用价值,谁也不会真的每天去用这老古董听广播听磁带。想修好它是出于对经典的情怀和致敬,温故而知新,在穿越时间与经典的对话中体会其中的工匠精神。 整个系统的工作方式如下:将DTGS-800模块、行程开关、天线和其他辅助电路封装成一个独立单元制成定位终端,固定在存放物品集装箱的开箱口。运输过程中,当集装箱密封完好并正常运输时,此定位终端可以定时向监控平台发送经纬度、时间等信息;而当集装箱被非正常开启时会触及行程开关,该定位终端可及时向监控平台发送报警信息和定位信息。 定位终端硬件总体框图如图2所示。 整个定位终端系统包括电源和电池供电模块、MCU模块及外围电路、DTGS-800模块及外围电路。由一片单片机来控制具有定位功能的DTGS-800,它们之间的通信是通过串口来完成的。由于所选单片机和DTGS-800的工作电平都在各自的工作电平范围之内,所以可以直接 详解 / 电路原理: 本电路采用BP01型压力传感器和运放MAX4472。BP01型压力传感器是为检测血压而专门设计的,主要用于便携式电子血压计。它采用精密厚膜陶瓷芯片和尼龙塑料封装,具有高线性、低噪声和外界应力小的特点;采用内部标定和温度补偿方式,提高了测量精度、稳定性和重复性,在全量程范围内,精度为±1%、零点失调不大于±300μV。MAX4472是MAXIM公司的一款集成了四个运算放大器的低功耗放大芯片。本系统中内部集成运放A接恒流源,为压力传感器提供恒定的电流,运放B和运放C,运放D组成差分输入、单端输出放大电路,直接输入ADC0监视血压直流分量。 血压传感电路 图 / 基于SIMl-2的现场总线 引言 现场总线仪表的重要特点是总线供电。总线供电是指仪表从传输数据的信号总线上获取维持其工作所需的电源。而无需本地电源供电。但由总线供电的仪表具有较严格的功耗约束和复杂的系统,设计可在10 mA下工作的现场总线仪表仍具有挑战性。这里提出一种基于SIMl-2的现场总线 媒体结合单元(MAU) 典型的现场总线仪表由媒体结合单元MAU(Medium Attachment Unit)、数字系统、A/D转换器、信号调理电路和传感器组成。其中MAU电路通常与数字系统设计在一个圆形线路板上,因此又称为“通讯圆卡”。 MAU电路分为总线供电和非总线供电两种类型,主要实现标准逻辑信号与传输介质 0 引言 RFID(Radio Frequency Identification)技术由于优秀的识别性能而被认为是二十一世纪最有应用潜力的十大技术之一,它可以应用到工业生产、国防军事、日常生活等社会的各个方面。在我国,倡导科技奥运的北京奥运会在门票、地铁、食品安全管理中已被试用。基于SAW(Surface Acoustic Wave)标签的RFID系统采用了先进微电子加工技术制造的SAW器件,具有体积小、重量轻、批量成本低、可靠性高、识别距离远、多功能等优点,与基于IC标签的RFID系统有很好的互补性,尤其在基于IC标签的RFID系统应用于带有金属物体、高温、强电磁干扰等恶劣环境无能为力时,基于SAW标签的RFID系统就显示了它 使用本设计实例中的电路可以开发并实现一台轻型、无噪声、廉价的三相、60Hz正弦波电压发生器。尽管其目标是用于测试电源控制器的电路,但它也可以用于需要具有120°相对相位差的三个正弦波的其它应用。IC1是一只22V10 PLD(可编程逻辑器件),它产生三个三相、60 Hz方波电压。IC1的内部寄存器Q0、Q1与Q2位使Q3位设定为领先Q4位 120°,并使Q5位设定为落后Q3位240°(图1)。将IC1的时钟频率设为748Hz,可在Q3、Q4和Q5产生60Hz输出。 IC1的三个方波输出电压(Q3、Q4和Q5)分别驱动IC2、IC3和IC4(图2),三只Maxim MAX294八阶低通开关电容滤波器产生三个2V正弦波( 薄膜晶体管液晶显示器(TFT-LCD)具有重量轻、平板化、低功耗、无辐射、显示品质优良等特点,其应用领域正在逐步扩大,已经从音像制品、笔记本电脑等显示器发展到台式计算机、工程工作站(EWS)用监视器。对液晶显示器的要求也正在向高分辨率、高彩色化发展。 由于CRT显示器和液晶屏具有不同的显示特性,两者的显示信号参数也不同,因此在计算机(或MCU)和液晶屏之间设计液晶显示器的驱动电路是必需的,其主要功能是通过调制输出到LCD电极上的电位信号、峰值、频率等参数来建立交流驱动电场。 本文实现了将VGA接口信号转换到模拟液晶屏上显示的驱动电路BWIN网站,采用ADI公司的高性能DSP芯片ADSP-21160来实现驱动电路的主要功能。 硬件电 超低功耗、高集成的模拟前端芯片MAX5865是针对便携式通信设备?例如手机、PDA、WLAN以及3G无线终端?而设计的,芯片内部集成了双路8位接收ADC和双路10位发送DAC,可在40Msps转换速率下提供超低功耗与更高的动态性能。芯片中的ADC模拟输入放大器为全差分结构,可以接受1VP-P满量程信号;而DAC模拟输出则是全差分信号,在1.4V共模电压下的满量程输出范围为400mV。利用兼容于SPITM和MICROWIRETM的3线串行接口可对工作模式进行控制,并可进行电源管理,同时可以选择关断、空闲、待机、发送、接收及收发模式。通过3线串口将器件配置为发送、接收或收发模式,可使MAX5865工作在FDD或TDD系统。在TDD模式 1 引言 要实现液晶显示器显示须具备以下4 个单元:控制器(Controller) 、电源管理单元(PMU) 、驱动电路(Driver) 、液晶显示器件(LCD) 。对于分辨率较小的液晶显示器件,如128×64、128×32等模块都具有控制器、电源管理单元、驱动器于一体的芯片。但对于高分辨率的液晶显示器(如320×240 ,640×480) 需要单独的控制器、电源管理单元、驱动器。本文给出了一种高分辨率液晶显示器电源管理电路的设计方案。 2 电路设计方案 实现液晶显示须具备4个单元,其框图如图1所示。本文给出的电源管理电路设计方案具有驱动电压产生、时序控制BWIN网站、温度补偿和对比度调节的功能,其框图如图2所示。 工具设计 指导手册:放大器 (第二版) 【电路】LC2200(空调器、电风扇、收录机、电视机和玩具)红外线、超声波和无线电遥控接收电路 MPS电机研究院 让电机更听话的秘密! 第一站:电机应用知识大考!第三期考题上线,跟帖赢好礼~ 适用于边缘设备的 Edge Impulse 机器学习平台发布了一套在 NVIDIA TAO Toolkit 和 Omniverse 上开发的新工具,为基于 Arm Corte ... 那么,第五代至强是如何实现这样的AI 性能提升的?日前,英特尔资深技术专家揭秘了其内部的技术细节。... 在 NVIDIA GTC 2024上,恩智浦和 NVIDIA 宣布了一项新的合作,使 NVIDIA 经过训练的 AI 模型能够通过 eIQ 机器学习开发环境部署 ... 2024年3月22日 – 专注于推动行业创新的知名新品引入 (NPI) 代理商™贸泽电子 (Mouser Electronics) 很高兴宣布赞助第22届“创造未 ... AMD于2024年3月21日在北京举办“Advancing AI PC”为主题的“AMD AI PC创新峰会”,苏姿丰作为AMD董事会主席及首席执行官出席了此次活动,... 嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科词云: